6 research outputs found

    Ancestral SARS-CoV-2, but not Omicron, replicates less efficiently in primary pediatric nasal epithelial cells

    Get PDF
    Children typically experience more mild symptoms of Coronavirus Disease 2019 (COVID-19) when compared to adults. There is a strong body of evidence that children are also less susceptible to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection with the ancestral viral isolate. However, the emergence of SARS-CoV-2 variants of concern (VOCs) has been associated with an increased number of pediatric infections. Whether this is the result of widespread adult vaccination or fundamental changes in the biology of SARS-CoV-2 remain to be determined. Here, we use primary nasal epithelial cells (NECs) from children and adults, differentiated at an air-liquid interface to show that the ancestral SARS-CoV-2 replicates to significantly lower titers in the NECs of children compared to those of adults. This was associated with a heightened antiviral response to SARS-CoV-2 in the NECs of children. Importantly, the Delta variant also replicated to significantly lower titers in the NECs of children. This trend was markedly less pronounced in the case of Omicron. It is also striking to note that, at least in terms of viral RNA, Omicron replicated better in pediatric NECs compared to both Delta and the ancestral virus. Taken together, these data show that the nasal epithelium of children supports lower infection and replication of ancestral SARS-CoV-2, although this may be changing as the virus evolves

    Ancestral SARS-CoV-2, but not Omicron, replicates less efficiently in primary pediatric nasal epithelial cells

    Get PDF
    Children typically experience more mild symptoms of Coronavirus Disease 2019 (COVID-19) when compared to adults. There is a strong body of evidence that children are also less susceptible to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection with the ancestral viral isolate. However, the emergence of SARS-CoV-2 variants of concern (VOCs) has been associated with an increased number of pediatric infections. Whether this is the result of widespread adult vaccination or fundamental changes in the biology of SARS-CoV-2 remain to be determined. Here, we use primary nasal epithelial cells (NECs) from children and adults, differentiated at an air-liquid interface to show that the ancestral SARS-CoV-2 replicates to significantly lower titers in the NECs of children compared to those of adults. This was associated with a heightened antiviral response to SARS-CoV-2 in the NECs of children. Importantly, the Delta variant also replicated to significantly lower titers in the NECs of children. This trend was markedly less pronounced in the case of Omicron. It is also striking to note that, at least in terms of viral RNA, Omicron replicated better in pediatric NECs compared to both Delta and the ancestral virus. Taken together, these data show that the nasal epithelium of children supports lower infection and replication of ancestral SARS-CoV-2, although this may be changing as the virus evolves.Peer reviewe

    Involvement of matrix metalloproteinase-3 in CCL5/CCR5 pathway of chondrosarcomas metastasis

    No full text
    CCL5 (previously called RANTES) was originally recognized as a product of activated T cells, and plays a crucial role in the migration and metastasis of human cancer cells. It has been reported that the effect of CCL5 is mediated via CCR receptors. We found that human chondrosarcoma tissues had significant expression of the CCL5 and CCR5, which was higher than that in normal cartilage. We also found CCL5 increased the migration and matrix metalloproteinases-3 (MMP)-3 expression in human chondrosarcoma cells (JJ012 cells). In addition, MMP-3 small interfering RNA and inhibitor inhibited the CCL5-induced cell migration. Activations of phosphatidylinositol 3-kinase (PI3K), Akt and NF-κB pathways after CCL5 treatment was demonstrated, and CCL5-induced expression of MMP-3 and migration activity was inhibited by the specific inhibitor of PI3K, Akt and NF-κB cascades. Taken together, these results indicate that CCL5 and CCR5 interaction enhanced migration of chondrosarcoma cells through the increase of MMP-3 production

    Environmental Impacts on COVID-19: Mechanisms of Increased Susceptibility

    No full text
    BACKGROUND: Since 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in \u3e554M cases and \u3e6.3M deaths worldwide. The disease caused by SARS-CoV-2, COVID-19, has resulted in a broad range of clinical symptoms differing in severity. Initially, the elderly were identified as particularly susceptible to severe COVID-19, with children experiencing less severe disease. However, as new variants arise, the epidemiology of SARS-CoV-2 infection is changing, and the disease severity in children is increasing. While environmental impacts on COVID-19 have been described, the underlying mechanisms are poorly described. OBJECTIVE: The Pacific Basin Consortium for Environment and Health (PBC) held meeting on September 16, 2021, to explore environmental impacts on infectious diseases, including COVID-19. METHODS: The PBC is an international group of environmental scientists and those interested in health outcomes. The PBC met to present preliminary data and discuss the role of exposures to airborne pollutants in enhancing susceptibility to and severity of respiratory tract viral infections, including COVID-19. FINDINGS: Analysis of the literature and data presented identified age as an important factor in vulnerability to air pollution and enhanced COVID-19 susceptibility and severity. Mechanisms involved in increasing severity of COVID-19 were discussed, and gaps in knowledge were identified. CONCLUSIONS: Exposure to particulate matter (PM) pollution enhanced morbidity and mortality to COVID-19 in a pediatric population associated with induction of oxidative stress. In addition, free radicals present on PM can induce rapid changes in the viral genome that can lead to vaccine escape, altered host susceptibility, and viral pathogenicity. Nutritional antioxidant supplements have been shown to reduce the severity of viral infections, inhibit the inflammatory cytokine storm, and boost host immunity and may be of benefit in combating COVID-19

    Environmentally persistent free radicals enhance SARS-CoV-2 replication in respiratory epithelium

    No full text
    Epidemiological evidence links lower air quality with increased incidence and severity of COVID-19; however, mechanistic data have yet to be published. We hypothesized air pollution-induced oxidative stress in the nasal epithelium increased viral replication and inflammation. Nasal epithelial cells (NECs), collected from healthy adults, were grown into a fully differentiated epithelium. NECs were infected with the ancestral strain of SARS-CoV-2. An oxidant combustion by-product found in air pollution, the environmentally persistent free radical (EPFR) DCB230, was used to mimic pollution exposure four hours prior to infection. Some wells were pretreated with antioxidant, astaxanthin, for 24 hours prior to EPFR-DCB230 exposure and/or SARS-CoV-2 infection. Outcomes included viral replication, epithelial integrity, surface receptor expression (, ), cytokine mRNA expression (, ), intracellular signaling pathways, and oxidative defense enzymes. SARS-CoV-2 infection induced a mild phenotype in NECs, with some cell death, upregulation of the antiviral cytokine , but had little effect on intracellular pathways or oxidative defense enzymes. Prior exposure to EPFR-DCB230 increased SARS-CoV-2 replication, upregulated expression, increased secretion of the proinflammatory cytokine , inhibited expression of the mucus producing gene, upregulated expression of (apoptosis pathway), (mitophagy pathway), and reduced levels of antioxidant enzymes. Pretreatment with astaxanthin reduced SARS-CoV-2 replication, downregulated expression, and prevented most, but not all EPFR-DCB230 effects. Our data suggest that oxidant damage to the respiratory epithelium may underly the link between poor air quality and increased COVID-19. The apparent protection by antioxidants warrants further research
    corecore